Introduction

SEQ Mapper was designed to perform sequence mapping between reference data and generated sample reads. Three types of STR loci were used: the STR repeat region only, the STR region plus the two primer sequences, and the entire STR locus spanning the two primers and flanking DNA. SEQ Mapper identifies STR alleles from complex DNA data obtained from MPS using these three parameters. Sequences of STR alleles are used as references of search. Four levels of search in different stringency were used to detect alleles matching generated reads:

- 1. Allele Search: is the strictest search requires a full match on the entire reference allele sequence trimmed by user specified primer indices against the specific FASTA/FASTQ read.
- 2. STR & Primers Search: is the next level search requires a match on STR, user specified 5' and 3' flanking sequences individually.
- 3. STR Search: is the next level search only requires a match on STR.
- 4. Primers Search: is the lowest level search requires match on 5' and 3'. Two Primers Search reports will be generated: one excludes the matched allele and another excludes the matched STR & primers. In Primers Search reports, the total number of different bases comparing allele and FASTA/Q read will be calculated. This Difference value is called Levenshtein Distance. Lower Levenshtein Distance suggests a sample read is similar to a reference allele.

The SEQ Mapper app is accessible through below URL:

http://forensic.mc.ntu.edu.tw:9000/SEQMapperWeb/Default.aspx

Upon successful logon, user will have access to SEQ Mapper application below:

ome About SEQ Mapper SEQ Mapper	Change	Password	
Q MAPPER MAIN FORM			Help
SEQ Mapper Workbench			SEQ Mapper Message
Select SEQ File Format			Please fill in all required parameters then press Submit
5' (Left) Flanking Sequence Begin Index and Length	1	10	button to submit the request.
3' (Right) Flanking Sequence Begin Index and Length	1	10	Available reports to download:
SEQ FASTA Input File			 SEQ Mapper Report 2015-10-03-63579477226 - STR 36 pool Life.zip
		Select	 SEQ Mapper Report 2015-09-27-63578972030 -
Reference Sequence Input Files			STR 36 pool Life.zip
		Select	
Submit			

Two data sources required:

1. A set of locus/allele reference data files having one locus in one file in CSV format.

2. A set of sample reads in one file in FASTA/FASTQ format .

Locus/Allele Reference Data

A locus CSV file contains its allele records and each allele record must have an allele, forward sequence and forward STR.

Allele	Forward Sequence	Forward STR
TPOX_5	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCACTT AGGGAACCCT <mark>CACTGAATGAATGAATGAATGAATGTT</mark> TGGGCAAATAAACGCTGACAAGGA CAGAAGGGCCTAGCGGGAAGGGAA	CACTGAATGAATGAATGAAT GAATGTT
TPOX_6	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCACTT AGGGAACCCT <mark>CACTGAATGAATGAATGAATGAATGAATGTT</mark> TGGGCAAATAAACGCTGACA AGGACAGAAGGGCCTAGCGGGAAGGGAA	CACTGAATGAATGAATGAAT GAATGAATGTT

Notice the STR is part of the sequence.

FASTA/FASTQ Read Sample Data

A read in a FASTA/FASTQ sample file must follow a valid FASTA/FASTQ header. The sample FASTA/FASTQ data file may have an optional group header in the first line and this group header line is like a FASTA header. If this group header line is omitted by user, SEQ Mapper will use the header of the first FASTA/FASTQ read as the group header. The group header is for report purpose.

In the sample reads data below the group header is provided.

Notice that the first read contains the forward sequence of allele TPOX_5 and the second read contains the forward sequence of allele TPOX_6. SEQ Mapper will find these two matches for Allele Search. In Primers & STR Search and the STR Search both matches will also be found as well, because STR and 5' and 3' are part of the allele in each reference allele.

The Reports

At the end of the search process multiple reports will be generated and saved in CSV.

1. A Summary Report shows the number of FASTA/Q reads found in the respective Allele Search Report, STR & Primers Search Report, and STR Search Report, and the number of reads found in the Primer Search Report excluding the respective STR & Primers and Allele.

James Chun	-I Lee; Bill Tse	ng; Liang-Kai Char	ng; Adrian Linac	re			
		ledicine; College	-		niversity		
beparenten	corr or crisic in	concept of the second	, meaner, m				
FASTA/O Gr	oup ID: CRVEA	:02079:03350					
		Begin Index/Len	th = 1 / 10: 3' (F	Right) Regin Inde	x/length = 1/10	0	
mopping op		Degin noch, cen	5 17 10, 5 (1	ingini, beginning			
4634 read(s)	found in Alle	le Search Report a	nd 440 read(s)	found in Primer	Search Report -	exclude matched	allele
							atched STR & Prim
		Search Report and	-				
50557 (200(5)		ocurenteportune			ranationnepor		
STR Search		STR & Prime	rs Search	Allele Searc	h		
Ameloger	4329	Ameloger	4226	Ameloger	3492		
TPOX	1570	TPOX	1519	TPOX	1142		
Total	5899	Total	5745	Total	4634		
lotai	5655	Total	5745	Total	4034		
Total 14620	EASTA/EASTO	read(s) entered b	vusor and 8626	read(s) did not	matchl		
		hortest read leng					
	of FASTA/Q r	-	an 105 and long	escreau length 2			
		ength less than or	equal to 100:0				
	-	ength less than or ength between 10					
	-	-					
	-	ength between 11					
	-	ength between 12					
	-	ength between 13					
	-	ength between 14					
	-	ength between 15					
	-	ength between 16					
	-	ength between 17					
	-	ength between 18					
	-	ength between 19					
		ength between 20					
	-	ength between 21					
	-	ength between 22					
	-	ength between 23					
		ength between 24					
	-	ength between 25					
	-	ength between 26					
		ength between 27					
	-	ength between 28					
	-	ength between 29					
	-	ength between 30					
	-	ength between 31					
Number of r	reads having le	ength between 32	1 and 330: 0				
Number of r	reads having le	ength between 33	1 and 340: 0				
Number of r	reads having le	ength between 34	1 and 350: 0				
Number of r	reads having le	ength between 35	1 and 360: 0				
Number of r	reads having le	ength between 36	1 and 370: 0				
Number of r	reads having le	ength between 37	1 and 380: 0				
Number of r	reads having le	ength between 38	1 and 390: 0				
Number of r	reads having le	ength between 39	1 and 400: 0				
	-	ength greater than					

15 Allele sequences handled having Ame	logenin_X with	n shortest length	106 and TPOX_16	with longest	length 209	
Allele count for each gene:						
Amelogenin contains 2 allele(s)						
TPOX contains 13 allele(s)						
5954 FASTA/Q read(s) skipped from mate	hing! User may	be able to re-ru	n using smaller p	rimer begin ir	ndices.	

2. Allele Search Report shows the number of FASTA/Q reads found matching the entire allele of a specific reference locus. The matched allele sequence will be trimmed according to the begin index of the primers user specified and included in the report.

4	A	В	С	D
1	Allele	Sequence	Is Reverse	Count
2	Amelogenin_X	ATCAGAGCTTAAACTGGGAAGCTGGTGGTAGGAACTGTAAAATCAGGACCACTTGAGAAACATCT GGGATAAAGAATCAACACACTATTCTTTACAGAGCCCAGGG	TRUE	1234
3	Amelogenin_X	CCCTGGGCTCTGTAAAGAATAGTGTGTTGATTCTTTATCCCAGATGTTTCTCAAGTGGTCCTGATTTT ACAGTTCCTACCACCAGCTTCCCAGTTTAAGCTCTGAT	FALSE	329
4	Amelogenin_Y	ATCAGAGCTTAAACTGGGAAGCTGATGGTAGGAACTGTAAAATTGGGACCACTTGAGAAACCACT TTATTTGGGATGAAGAATCCACCCACTATTCTTTACAGAGCCCAGGG	TRUE	1164
5	Amelogenin_Y	CCCTGGGCTCTGTAAAGAATAGTGGGTGGATTCTTCATCCCAAATAAAGTGGTTTCTCAAGTGGTCC CAATTTTACAGTTCCTACCATCAGCTTCCCAGTTTAAGCTCTGAT	FALSE	765
6	TPOX_4	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGCCCAAAC ATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTGTGCCAGTCGACGGTTCTGGGTGCT AGTGATCACAGCCCTGAAACACAG	TRUE	1
7	TPOX_5	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCACTTAGGG AACCCTCACTGAATGAATGAATGAATGAATGTTTGGGCAAATAAACGCTGACAAGGACAGAAGGG CCTAGCGGGAAGGGAA	FALSE	1
8	TPOX_6	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCACTTAGGG AACCCTCACTGAATGAATGAATGAATGAATGAATGTTTGGGCAAATAAACGCTGACAAGGACAGA AGGGCCTAGCGGGAAGGGAA	FALSE	2
9	TPOX_6	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGCCCAAAC ATTCATTCATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTGTGCCAGTCGACGGTTCT GGGTGCTAGTGATCACAGCCCTGAAACACAG	TRUE	1
10	TPOX_7	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCACTTAGGG AACCCTCACTGAATGAATGAATGAATGAATGAATGAATGTTTGGGCAAATAAACGCTGACAAGGA CAGAAGGGCCTAGCGGGAAGGGAA	FALSE	13
11	TPOX_7	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGCCCAAAC ATTCATTCATTCATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTGTGCCAGTCGACG GTTCTGGGTGCTAGTGATCACAGCCCTGAAACACAG	TRUE	2
12	TPOX_8	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCACTTAGGG AACCCTCACTGAATGAATGAATGAATGAATGAATGAATGA	FALSE	955
13	TPOX_8	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGCCCAAAC ATTCATTCATTCATTCATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTGTGCCAGTCG ACGGTTCTGGGTGCTAGTGATCACAGCCCTGAAACACAG	TRUE	1 <mark>6</mark> 7

3. STR & Primers Search Report shows the number of FASTA/Q reads found matching the STR and 5 prime and 3 prime individually of an allele of a specific reference locus. The matched allele sequence will be trimmed according to the begin index of the primers user specified and included in the report. The matched STR and allele sequences will be included in the report.

	A	В	C	D	E
1	Allele	STR	Sequence	Is Reverse	Count
2	Amelogenin_XGAAACATCTGATCAGAGCTTAAACTGGGAAGCTGGTAGGAAGCTGTAAAATCAGGACCACTTGAGAA ACATCTGGGATAAAGAATCAACACACTATTCTTTACAGAGCCCAGGGAmelogenin_XCAGATGTTTCCCCTGGGCTCTGTAAAGAATCAACACACTATTCTTTACAGAGCCCAGGGAmelogenin_YACCACTTTATATCAGAGCTTAAACTGGGAAGCTGATGGTAGGAACTGTAAAATTGGGACCACTTGAGAAA ACCACTTTATTACAGTCCTACCACCAGCTGCCACTATTCTTACAGAGCCCAGGGAmelogenin_YACCACTTTATATCAGAGCTTAAACTGGGAAGATGGTAGGAACTGTAAAATTGGGACCACTTGAGAAA ACCACTTTATTGGGCACCATTGAAGAATAGTGGGTGGATCTTCACACTCCACTATTCTTACAGAGCCCAGGGAmelogenin_YATAAAGTGGTCCCTGGGCTCTGTAAAGAATAGTGGGTGGATCTTCACACTAGCACCACAAATAAAGTGGTTTCTCAA TGGTCCCAATTTATTGCGGCACTGTAAAGAATAGTGGGTGG				1299
3	Amelogenin_X	CAGATGTTTC	CCCTGGGCTCTGTAAAGAATAGTGTGTGTTGATTCTTTATCCCAGATGTTTCTCAAGTGGTCCT GATTTTACAGTTCCTACCACCAGCTTCCCAGTTTAAGCTCTGAT	FALSE	766
4	Amelogenin_Y	ACCACTITAT	ATCAGAGCTTAAACTGGGAAGCTGATGGTAGGAACTGTAAAATTGGGACCACTTGAGAA ACCACTTTATTTGGGATGAAGAATCCACCCACTATTCTTTACAGAGCCCAGGG	TRUE	1242
5	Amelogenin_Y	ATAAAGTGGT	CCCTGGGCTCTGTAAAGAATAGTGGGTGGATTCTTCATCCCAAATAAAGTGGTTTCTCAAG TGGTCCCAATTTTACAGTTCCTACCATCAGCTTCCCAGTTTAAGCTCTGAT	FALSE	919
6	TPOX_4		GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGC CCAAACATTCATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTGTGCCAGTCGAC GGTTCTGGGTGCTAGTGATCACAGCCCTGAAACACAG	TRUE	1
7	TPOX_5		CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCAC TTAGGGAACCCTCACTGAATGAATGAATGAATGAATGTTTGGGCAAATAAACGCTGACA AGGACAGAAGGGCCTAGCGGGAAGGGAA	FALSE	1
8	TPOX_6	TPOX_6 CACTGAATGAATGAATGTT CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCAC			2
9	TPOX_6	AACATTCATTCATTCAT TCATTCATTCAGTG	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGC CCAAACATTCATTCATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTGTGCC AGTCGACGGTTCTGGGTGCTAGTGATCACAGCCCTGAAACACAG	TRUE	1
10	TPOX_7		CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCAC TTAGGGAACCCTCACTGAATGAATGAATGAATGAATGAAT	FALSE	17
11	TPOX_7		GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGC CCAAACATTCATTCATTCATTCATTCATTCATTCAGTGAGGGTTCCCTAAGTGCCTGTTCTG TGCCAGTCGACGGTTCTGGGTGCTAGTGATCACAGCCCTGAAACACAG	TRUE	5
12	TPOX_8		CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGAACCGTCGACTGGCACAGAACAGGCAC TTAGGGAACCCTCACTGAATGAATGAATGAATGAATGAAT		1079
13	TPOX_8		GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGCCCTTCTGTCCTGTCAGCGTTTATTTGC CCAAACATTCATTCATTCATTCATTCATTCATTCATTC	TRUE	413

4. STR Search Report shows the number of FASTA/Q reads found matching the STR of an allele of a specific reference locus. The matched STR sequence will be included in the report.

1	A	В	С	D
1	Allele	STR	Is Reverse	Count
2	Amelogenin_X	CAGATGTTTC	FALSE	768
3	Amelogenin_X	GAAACATCTG	TRUE	1352
4	Amelogenin_Y	ACCACTITAT	TRUE	1284
5	Amelogenin_Y	ATAAAGTGGT	FALSE	925
б	TPOX_4	AACATTCATTCATTCAGTG	TRUE	1
7	TPOX_5	CACTGAATGAATGAATGAATGAATGTT	FALSE	2
8	TPOX_6	AACATTCATTCATTCATTCATTCATTCAGTG	TRUE	1
9	TPOX_6	CACTGAATGAATGAATGAATGAATGAATGTT	FALSE	2
10	TPOX_7	AACATTCATTCATTCATTCATTCATTCATTCAGTG	TRUE	5
11	TPOX_7	CACTGAATGAATGAATGAATGAATGAATGAATGTT	FALSE	18
12	TPOX_8	AACATTCATTCATTCATTCATTCATTCATTCAGTG	TRUE	432
13	TPOX_8	CACTGAATGAATGAATGAATGAATGAATGAATGAATGATGT	FALSE	1109

5. Primer Search Report - exclude matched Allele: this report shows the number of FASTA/Q read matching the primers only excluding all reads matched the entire allele. Both trimmed and untrimmed read for the matching primers are

included in the report. The trimmed read is aligned with the matching primers from both ends, including the primers. In addition, the total number of different bases comparing allele and FASTA/Q read will be calculated. Lower Difference value suggests a potential match despite the specific matching allele and FASTA/Q read are not 100% identical.

The Difference value is called the Levenshtein Distance. The Levenshtein Distance between two sequences is the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to change one sequence into the other. Therefore the Levenshtein Distance is ideal to measure how similar both sequences are – zero difference means identical.

Below shows partial Primer Search Report - exclude matched Allele. Notice the report is sorted by Difference then Allele.

Allele Used in Comparison	Trimmed FASTA/Q Read Sequence	Original FASTA/Q Read Sequence	ls Reverse	Difference
TPOX_8	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCT AGGCCCTTCTGTCCTTGTCAGCGTTTATTTG CCCAAACATTCATTCATTCATTCATTCATTCATTCATTC	GGCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGG CCCTTCTGTCCTTGTCAGCGTTTATTTGCCCAAAC ATTCATTCATTCATTCATTCATTCATTCATTC	TRUE	1
TPOX_9	CTGTGTTTTCAGGGCTGTGATCACTAGCACCC AGAACCGTCGACTGGCACAGAACAGGCAC TTAGGGAACCCTCACTGAATGAATGAATGA ATGAATGAATGAATGAATGAATGA	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGA ACCGTCGACTGGCACAGAACAGGCACTTAGGGA ACCCTCACTGAATGAATGAATGAATGAATGAAT GAATGAATGAATGA	FALSE	1
Amelogenin_X		AACCTCATCCTGGGCACCCTGGTTATATCAACTT CAGCTATGAGGTAATTTTTCTCTTTACTAATTTTG ACCATTGTTTGCGTTAACAATGCCCTGGGCTCTG TAAAGAATAGTGTGTTGATTCTTTATCCCAGATG TTTCTCAAGTGGTCCTGATTTTACAGTTCCTACCA CCAGCTTCCCCAGTTTTAAGCTCTGAT	FALSE	2
Amelogenin_X	CCCTGGGCTCTGTAAAGAATAGTGTGTTGA TTCTTTATCCCAGATGTTCCCAAGTGGTCCT GATTTTACAGTTCCTACCACCAGCTTCCCAG TTTAAGCTCTGAT	ACCTCATCCTGGGCACCCTGGTTATATCAACTTC AGCTATGAGGTAATTTTCTCTTTACTAATTTTGAC CATTGTTTGCGTTAACAATGCCCTGGGCTCTGTA AAGAATAGTGTGTTGATTCTTTATCCCAGATGTT CCCAAGTGGTCCTGATTTTACAGTTCCTACCACC AGCTTCCCAGTTTAAGCTCTGAT	FALSE	2
Amelogenin_X		ACCTCATCCTGGGCACCCTGGTTATATCAACTTC AGCTATGAGGTAATTTTTCTCTTTACTAATTTTGA CCATTGTTTGCGTTAACAATGCCCTGGGCTCTGT AAAGAATAGTGTGTCGATTCTTTATCCCAGATGT TTCTCAAGTGGTCCTGATTTTACAGTTCCTACCAC CATGCTTCCCAGTTTAAGCTCTGAT	FALSE	2
Amelogenin_X	TTCTTTATCCCAGATGCTTCTCAAGTGGTCC	ACCTCATCCTGGGCACCCTGGTTATATCAACTTC AGCTATGAGGTAATTTTCTCTTTACTAATTTTGA CCATTGTTTGCGTTAACAATGCCCTGGGCTCTGT AAAGAATAGTGTGTTGATTCTTTATCCCAGATGC TTCTCAAGTGGTCCTGATTTTACAGTTCCTACCAC CAGTCTTCCCAGTTTAAGCTCTGAT	FALSE	2

6. Primer Search Report - exclude matched STR & Primers: similar to the above report, this report shows the number of FASTA/Q read matching the primers only excluding all reads matched STR.

Below shows partial Primer Search Report - exclude matched STR & Primers. Notice the report is sorted by Difference.

Allele Used in Comparison	Trimmed FASTA/Q Read Sequence	Original FASTA/Q Read Sequence	ls Reverse	Difference
TPOX_8	CTGTGTTTCAGGGCTGTGATCACTAGCACC CAGAACCGTCGTACTGGCACAGAACAGGC ACTTAGGGAACCCTCACTGAATGAATGACT GAATGAATGAATGAATGAATGAATTGTTTGGGCA AATAAACGCTGACAAGGACAGAAGGGCCT AGCGGGAAGGGAA	CTGTGTTTCAGGGCTGTGATCACTAGCACCCAGA ACCGTCGTACTGGCACAGAACAGGCACTTAGGG AACCCTCACTGAATGAATGAATGAATGAATGAA TGAATGAATTGTTTGGGCAAATAAACGCTGACA AGGACAGAAGGGCCTAGCGGGAAGGGAA	FALSE	3
TPOX_8	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCT AGGCCCTTCTGTCCTTGTCAGCGTTTATTTG CCCAAACATTCTATTCATTCATTCATTCATT CATTCATT	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGC CCTTCTGTCCTTGTCAGCGTTTATTTGCCCAAACA TTCTATTCATTCATTCATTCATTCATTCAGTG AGGTTCCTAAGTGCCTGTTCTGTGCCAGTCGACG GTTCTGGGTGCTAGTGATCACAGCCCTGAAACA CAG	TRUE	3
TPOX_8	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCT AGGCCCTTCTGTCCTTGTCAGCGTTTATTTG CCCAACATTCTATTCATTCATTCATTCATTC ATTCATTC	GCGCTGGTCTTACTCCTGTTCCCTTCCCGCTAGGC CCTTCTGTCCTTGTCAGCGTTTATTTGCCCAACAT TCTATTCATTCATTCATTCATTCATTCAGTG AGGGTTCCTAAGTGCCTGTTCTGTGCCAGTCGAC GGTTCTGGGTGCTAGTGATCACAGCCCTGAAAC ACAG	TRUE	3
Amelogenin_X	CCCTGGGCTCTGTAAAGAATAGTGTGTTGA TTCTTTATCCCAGATGTTCTCAAGTGGTCCT GATTTACAGTTCCTACCATCAGTCTTCCCAG TTTAAGCTCTGAT	ACCTCATCCTGGGCACCCTGGTTATATCAACTTC AGCTATGAGGTAATTTTCTCTTTACTAATTTTGAC CATTGTTTGCGTTAACAATGCCCTGGGCTCTGTA AAGAATAGTGTGTTGATTCTTTATCCCAGATGTT CTCAAGTGGTCCTGATTTACAGTTCCTACCATCA GTCTTCCCAGTTTAAGCTCTGAT	FALSE	4
Amelogenin_X	CCCTGGGCTCTGTAAAGAATAGTGTGTTGA TTCTTTATCCCAGATGTTCTCAAGTAGTCCT GATTTACAGTTCCTACCACCTGCTTCCCAGT TTAAGCTCTGAT	ACCTCATCCTGGGCACCCTGGTTATATCAACTTC AGCTATGAGGTAATTTTCTCTTTACTAATTTTGA CCATTGTTTGCGTTAACAATGCCCTGGGCTCTGT AAAGAATAGTGTGTTGATTCTTTATCCCAGATGT TCTCAAGTAGTCCTGATTTACAGTTCCTACCACCT GCTTCCCAGTTTAAGCTCTGAT	FALSE	4
Amelogenin_X	TTCTTTATCCCAGATGTTCTCAAGTGGTCCT	ACCTCATCCTGGGCACCCTGGTTATATCAACTTC AGCTATGAGGTAATTTTTCTCTTTACTAATTTTGA CCATTGTTTGCGTTAACAATGCCCTGGGCTCTGT AAAGAATAGTGTGTTGATTCTTTATCCCAGATGT TCTCAAGTGGTCCTGATTTTACAGTTCCTACCTAC CATCGCTTCCCAGTTTAAGCTCTGAT	FALSE	4

7. Allele Sequence Record: all reference alleles, including allele name, forward sequence, forward STR, forward 3', forward 5', reverse sequence, reverse STR, reverse 3' and reverse 5', are collected in this report.

User is required to provide the forward allele and forward STR sequences for each reference allele, SEQ Mapper will automatically decide the primers based on user entered flanking sequences indices and lengths then prepare the revers primers, STR and allele sequences.

Allele	Forward Sequence	Forward 5'	Forward STR	Forward 3'	Reverse Sequence	Reverse 3'	Reverse STR	Reverse 5'
Amelogenin_X	CCCTGGGCTCTGTAAAGAATA GTGTGTTGATTCTTTATCCCAG ATGTTTCTCAAGTGGTCCTGA TTTTACAGTTCCTACCACCAG CTTCCCAGTTTAAGCTCTGAT	ссстбббстс	CAGATGTTTC	AAGCTCTGAT	ATCAGAGCTTAAACTGGGAA GCTGGTGGTAGGAACTGTAA AATCAGGACCACTTGAGAAA CATCTGGGATAAAGAATCAA CACACTATTCTTTACAGAGCC CAGGG	ATCAGAGCTT	GAAACATCTG	GAGCCCAGGG
Amelogenin_Y	CCCTGGGCTCTGTAAAGAATA GTGGGTGGATTCTTCATCCCA AATAAAGTGGTTTCTCAAGTG GTCCCAATTTTACAGTTCCTAC CATCAGCTTCCCAGTTTAAGC TCTGAT	CCCTGGGCTC	ATAAAGTGGT	AAGCTCTGAT	ATCAGAGCTTAAACTGGGAA GCTGATGGTAGGAACTGTAA AATTGGGACCACTTGAGAAA CCACTTTATTTGGGATGAAGA ATCCACCCACTATTCTTTACA GAGCCCAGGG	ATCAGAGCTT	ACCACTTTAT	GAGCCCAGGG
TPOX_4	CTGTGTTTCAGGGCTGTGATC ACTAGCACCCAGAACCGTCG ACTGGCACAGAACAGGCACT TAGGGAACCCTCACTGAATG AATGAATGAATGTTTGGGCA AATAAACGCTGACAAGGACA GAAGGGCCTAGCGGGAAGGG AACAGGAGTAAGACCAGCGC	CTGTGTTTCA	CACTGAATGAA TGAATGAATGT T	AGACCAGCGC	GCGCTGGTCTTACTCCTGTTCC CTTCCCGCTAGGCCCTTCTGTC CTTGTCAGCGTTTATTTGCCCA AACATTCATTCATTCATTCATTCAGT GAGGGTTCCCTAAGTGCCTGT TCTGTGCCAGTCGACGGTTCT GGGTGCTAGTGATCACAGCCC TGAAACACAG	GCGCTGGTCT	AACATTCATTC ATTCATTCAGTG	TGAAACACAG
TPOX_5	CTGTGTTTTCAGGGCTGTGATC ACTAGCACCCAGAACCGTCG ACTGGCACAGAACAGGCACT TAGGGAACCCTCACTGAATG AATGAATGAATGAATGATGTTTGG GCAAATAAACGCTGACAAGG ACAGAAGGGCCTAGCGGGAA GGGAACAGGAGTAAGACCAG CGC	CTGTGTTTCA	CACTGAATGAA TGAATGAATGA ATGTT	AGACCAGCGC	GCGCTGGTCTTACTCCTGTTCC CTTCCCGCTAGGCCCTTCTGTC CTTGTCAGCGTTTATTTGCCCA AACATTCATTCATTCATTCATTCATT CAGTGAGGGTTCCCTAAGTGC CTGTTCTGTGCCAGTCGACGG TTCTGGGTGCTAGTGATCACA GCCCTGAAACACAG	GCGCTGGTCT	AACATTCATTC ATTCATTCATTC AGTG	TGAAACACAG

8. Skipped FASTA Read Sequence: all FASTA/Q reads excluded from matching are collected in this report. A possible cause is that the read is too short to satisfy the begin index and length of the primers specified by the user. In this case, user is advised to review the data source.

>CRVEA:02079:03350: FASTA data skipped >CRVEA:00004:01405 GATAGATAGATAGGAT >CRVEA:00005:00787 ATCAGAGCTTAAA

9. No Match FASTA Read Sequence: as a last resort, all FASTA/Q reads matching no reference allele are collected in this report.

>CRVEA:00200:00987 GCATGAAGCTGCACCGAAAG >CRVEA:00207:02694 ATCAGAGCTTAAACTGGGA >CRVEA:00223:00484 GCATGAAGCTGCACCGAAAG

The begin index and length of primers can help the user to determine how primers can be extracted from the reference alleles. It depends of how the reference data is prepared in the lab, sometimes the result may not completely meet user's expectation. Using the No Match FASTA Read Sequence can provide the user a second chance to "tune" or better organize the reference data for more ideal results.